If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2(2+5x)=-(x+5)(2-x)
We move all terms to the left:
3x^2-2(2+5x)-(-(x+5)(2-x))=0
We add all the numbers together, and all the variables
3x^2-2(5x+2)-(-(x+5)(-1x+2))=0
We multiply parentheses
3x^2-10x-(-(x+5)(-1x+2))-4=0
We multiply parentheses ..
3x^2-(-(-1x^2+2x-5x+10))-10x-4=0
We calculate terms in parentheses: -(-(-1x^2+2x-5x+10)), so:We add all the numbers together, and all the variables
-(-1x^2+2x-5x+10)
We get rid of parentheses
1x^2-2x+5x-10
We add all the numbers together, and all the variables
x^2+3x-10
Back to the equation:
-(x^2+3x-10)
3x^2-10x-(x^2+3x-10)-4=0
We get rid of parentheses
3x^2-x^2-10x-3x+10-4=0
We add all the numbers together, and all the variables
2x^2-13x+6=0
a = 2; b = -13; c = +6;
Δ = b2-4ac
Δ = -132-4·2·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-11}{2*2}=\frac{2}{4} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+11}{2*2}=\frac{24}{4} =6 $
| 12x+32=19-6(5/3x-1 | | 3t^2-7t-22=0 | | 2(x-2)/3=2(x+1)/6 | | 6x+4+3x=3x-14 | | (x+5)/2+(x-8)=31 | | 113=12x+5 | | -7(2x+7)=-14x+49 | | 2x-(-2/7)=5 | | (7/9)w-(13/6)=(7/2)w+(5/9) | | -25=-5/8x | | 2n+(n-9)=-41-n | | 3x^2-2x=-5x^2-3x | | w+2/5=-1/3 | | x+7/10=2/5+x−6/4 | | -2b÷13=8÷13 | | 21-1+19=x-1 | | 2x+14-34=4x-11x+4x(x-1) | | x+710=25+x−64 | | 2d=d–10 | | -11+5=x+6 | | 82/120=x/100 | | 3x-2=3x+3-5 | | -14+5x=-10 | | -7=-3x-15-7x | | 28x^2-5=-5x^2+127 | | -13+x-2=10-10+1 | | 8.13x=23.22 | | 7(8y-1)=-175 | | -13+x-2=10+1 | | 2x+65=0 | | -2/3(x1/5)=-1/8(x+2/5) | | 2x2+65=0 |